Online / Physical Event

10th Edition of International Conference on

Analytical Chemistry

Theme: To Expand the Scope and Uptake of Analytical Chemistry

Event Date & Time

Event Location

London, UK

Brochure Program Abstract Registration ReaderBase Awards

20 Years Of Excellence in Scientific Events

Performers / Professionals From Around The Globe

Conference Speaker

Tony Q Yan

Pfizer Inc,
USA

Conference Speaker

Wai Yim Ching,

University of Missouri,
USA

Conference Speaker

Batric Pesic

University of Idaho,
USA

Conference Speaker

Yanli Wang

National Center for Biotechnology Information,
USA

Conference Speaker

Zivko Nikolov

Texas A&M University,
USA

Conference Speaker

Don Coltart

University of Houston,
USA

Conference Speaker

Evgeny Katz

Clarkson University,
USA

Conference Speaker

Eduard Rogatsky

Yeshiva University,
USA

Conference Speaker

Peter de Boves Harrington

Ohio University
USA

Conference Speaker

Chen Yang

Boston University,
USA

Conference Speaker

Dharshi Bopegedera

The Evergreen State College,
USA

Conference Speaker

Jennifer E Claus

MilliporeSigma,
USA

Tracks & Key Topics

Analytical Chemistry 2019

About Conference

EuroSciCon invites all the participants from all over the world to attend "10th Edition of International Conference on Analytical Chemistry" during February 28 - March 01, 2019 in London, UK which includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions.

Analytical Chemistry is the science of obtaining, processing and communicating information about the composition and structure of matter. Analytical chemistry studies and uses instruments and methods used to separate, identify and quantify matter. In practice separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration. Analytical chemistry consists of classical, wet chemical methods and modern, instrumental methods. Classical qualitative methods use separations such as precipitation, extraction and distillation. Market research report for Analytical chemistry according to IMS (Intercontinental Marketing Services) Health study report, in 2011 Austria became the fourth largest pharmaceutical market in Europe with a market size of $22.7 billion. The market is dominated by branded medicines with a share of about 88% value wise.  Presently few Pharma companies in Austria have received approvals from US Food and Drug Administration (US FDA), European Medicines Agency (EMA), Pharmaceuticals and Medical Devices Agency, Japan (PMDA). Spectrometry segment has the largest share (33.8%) followed by chromatography (22%) in the year 2011. The spectrometry market is driven by the coupling of mass spectrometry with chromatographic techniques, growing 7.4% from 2011 to 2017.

The world has witnessed a strong pattern of demand for analytical instruments and automation products in the past few years. The US, in such a scenario, has played a leadership role in further strengthening the market potential. Renowned players of the industry has effectively seen boost in their revenue, marked by factors such as high investments, strict regulations & compliances, and product innovations. Though the economic slowdown impacted the market in 2009, the post-recession period is likely to bring increased spending from end-users. By 2014, the US analytical instruments market may reach US$ 7.3 Billion.In 2011, the market size of analytical instruments sector in the US is expected to be worth US$ 6.6 Billion. Market growth is largely dependent on the spending patterns of several industries, such as chemicals, food & beverage, oil & gas, electric utilities, pharmaceutical etc. As most of these sectors are performing good and capital spending is effective, the demand for quality driven analytical instrument may propel the overall market. Analytical chemists play a critical role as problem solvers in industries such as pharmaceuticals, food testing, life sciences, and cosmetic companies, and analytical chemists with interdisciplinary backgrounds are finding an even greater demand for their skills by employers. Increasingly, analytical chemistry is also viewed to be integral to companies needs and has evolved from being a tool to test a sample to being critical to get the needed information to make the right decisions when moving a product from development to commercialization. Another reason behind the growing demand for analytical chemists is the development and availability of increasingly complex, sensitive and faster analytical instruments.

Identification may be based on differences in colour, odour, melting point, boiling point, radioactivity or reactivity. Classical quantitative analysis uses mass or volume changes to quantify amount. Instrumental methods may be used to separate samples using chromatography, electrophoresis or field flow fractionation. Then qualitative and quantitative analysis can be performed, often with the same instrument and may use light interaction, heat interaction, electric fields or magnetic fields. Often the same instrument can separate, identify and quantify an analyte. Analytical chemistry is also focused on improvements in experimental design, chemometrics and the creation of new measurement tools. Analytical chemistry has broad applications to forensics, medicine, science and engineering.

Analytical Chemistry 2019 Conference mainly focuses novel approaches to analytical and bioanalytical methods, analytical methodology, bioanalytical methodology, chromatograpic techniques, environmental analytical chemistry, electrophoresis, advancements in mass spectrometry, forensic analysis, advances in separation techniques, analytical  biotechnology,  pharmaceutical analysis, process analytical chemistry, thermal analysis and glycomics, applications of analytical and bioanalytical methods, new instrumentation and equipment, regulatory issues and biosafety challenges in bioanalysis.

Sessions/Tracks

EuroSciCon invites all the participants from all over the world to attend "10th Edition of International Conference on Analytical Chemistry" during February 28-March 01, 2019 in London, UK which includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions.

 

Analytical Chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter. Analytical chemistry studies and uses instruments and methods used to separate, identify, and quantify matter.  In practice separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration. Analytical chemistry consists of classical, wet chemical methods and modern, instrumental methods. Classical qualitative methods use separations such as precipitation, extraction and distillation. Identification may be based on differences in color, odor, melting point, boiling point, radioactivity or reactivity. Classical quantitative analysis uses mass or volume changes to quantify amount. Instrumental methods may be used to separate samples using chromatography, electrophoresis or field flow fractionation. Then qualitative and quantitative analysis can be performed, often with the same instrument and may use light interaction, heat interaction, electric fields or magnetic fields . Often the same instrument can separate, identify and quantify an analyte. Analytical chemistry is also focused on improvements in experimental design, chemometrics, and the creation of new measurement tools. Analytical chemistry has broad applications to forensics, medicine, science and engineering.

 

Track 1: Novel Approaches to Analytical and Bioanalytical Methods

Innovations used to perform bioanalytical techniques change as indicated by the sub-atomic substance's tendency. With compound products, the organic parts of test samples can be evacuated by precipitation or extraction, permitting remaining little molecule (s) to be analyzed with advances, for example, LC–MS or GC–MS. With biomolecular products (or antiproduct antibodies), processing away the organic parts of a sample can similarly expel the objective analyte, making precise quantitation technically impossible. So for biotech products and antiproduct antibodies, bioanalytical methods require advances that can particularly gauge one biological moiety (the protein(s) of interest) within the sight of a biological milieu (which contains numerous proteins).

Immunological techniques that utilizes particular antigen-antibody recognition (e.g., ELISA-like  methods) are typically opted for bioanalytical assays applied to biopharmaceutical products since they can angle the one protein of interest out of the protein blend. Similarly, immunogenicity screening tests utilize ELISA-like methods to catch receptive immunoglobulins. Maybe the disarray between bioanalytical methods and analytical methods utilized for the testing of biomolecular products" is more pervasive in the biopharmaceutical community in light of the way of our products. The most exact term for the analytical methods used to evaluate the physiochemical parameters of these products is thought by many to be biomolecular methods.

 

Track 2: Analytical Methodology

An analytical method is a gathering of set focuses required to run a solitary example on the 6890 Series GC. Techniques make it conceivable to re-establish the instrument to a coveted setup without returning all the set-points. You can think about a strategy as a gathering of finished control tables, containing data, for example, oven temperature programs, pressure programs, inlet temperatures, and so forth. Really, there is dependably a dynamic technique in the GC. It is the arrangement of conditions that are controlling the machine now. It can be reloaded any time. Analytical methadology incorporates fluorescence imaging has been utilized generally in cell science to concentrate cell structures and procedures, especially in living cells. Electro Analytical Techniques: Electroanalytical methods offer a novel access to data on compound, biochemical, and physical frameworks. Both the instrumental basis and the theoretical fundamentals have been created with the end goal that non-experts can easily apply them. Nanotechnology applications in scientific strategies Modern analytical chemistry is commanded by instrumental analysis where the emphasis is on the single sort of instrument. Over the previous decade, the scientific and technological intrigue has moved from the perceptible to the nanoscopic measure level. With the expanding requirement for portraying materials, it is essential to break down neighborhood contrasts in the structure and piece of nanomaterials. Drug screening: Strategy and techniques. Analytical methods must be approved to give dependable information to regulatory submissions. These techniques are fundamental for various purposes, including testing for QC discharge, testing of security tests, testing of reference materials and to give information to provide data to support specifications.

 

Track 3: Bioanalytical Methodology

The advancement of the bioanalytical methodology brought a dynamic discipline for which the future holds many energizing opportunities to further advancements. The principle effect of bionalysis in the pharmaceutical area is to acquire a quantitative measure of the drug and its metabolites. The reason for existing is to play out the pharmacokinetics, toxicokinetics, bioequivalence and presentation reaction like pharmacokinetic/pharmacodynamic examines. Different bioanalytical systems are performed in bioanalytical studies, for example, hyphenated methods, chromatographic methods, and ligand bioanalytical strategies. This audit widely highlights the part of bioanalytical methods and hyphenated instruments in evaluating the bioanalysis of the medications.

 

Track 4: Chromatography

Chromatography is a laboratory technique for the separation of a mixture. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. The various constituents of the mixture travel at different speeds, causing them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation. Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for later use, and is thus a form of purification. Analytical chromatography is done normally with smaller amounts of material and is for establishing the presence or measuring the relative proportions of analytes in a mixture. The two are not mutually exclusive.

 

Track 5: Environmental Analytical Chemistry

Environmental Analytical Chemistry concentrate on specialization in advanced modern analytical methodology to confront different difficulties in environmental and pharmaceutical industry. The Journal covers zone, for example, analytical instrumentation techniques for remote estimations, assurance of trace atmospheric constituents of anthropogenic and characteristic root, location and ID of natural and inorganic poisons in air, water, soil determination and validation of substantial metals and radionuclides in the environment, diverse technique of chemometrics in ecological examination. Instances of issues which have been tended to by climatic science consolidate destructive rain, ozone consumption, photochemical fumes cloud, greenhouse gases and a global warming. Environmental chemistry includes some points that incorporates astrochemistry, environmental science, ecological demonstration, geochemistry, marine chemistry and pollution remediation.

 

Track 6: Electrophoresis

The development of particles under spatially uniform electric field in a liquid is called electrophoresis. It is caused by a charged interface show between the molecule surface and the encompassing liquid. The rate of movement of molecule relies on upon the quality of the field, on the net charge size and state of the particles and furthermore on the ionic quality, consistency and temperature of medium in which the atoms are moving. As an analytical tool, electrophoresis is straightforward, fast and exceedingly sensitive. It is utilized scientifically to concentrate the properties of a solitary charged species and as a separation technique. It gives the premise to various analytical techniques utilized for isolating atoms by size, charge, or restricting fondness. Example for the partition of deoxyribonucleic corrosive (DNA), ribonucleic corrosive (RNA), or protein particles utilizing an electric field connected to a gel framework. Gel framework utilized primarily is polyacrylamide and agarose. DNA Gel electrophoresis is generally performed for investigative purposes, regularly after intensification of DNA by means of PCR, yet might be utilized as a preparative technique before utilization of different techniques, for example: mass spectrometry, RFLP, PCR, cloning, DNA sequencing or Southern blotching for further characterization.

 

Track 7: Mass Spectrometry

Mass spectrometry is a powerful analytical method used to assess known materials, to perceive obscure mixes inside an illustration and to clarify the structure and compound properties of various particles. The aggregate method incorporates the change of the example into vaporous particles, with or without fracture, which are then described by their mass to charge extents (m/z) and relative abundances. This technique essentially concentrates the impact of ionizing energy on particles. It relies on substance responses in the gas phase in which sample molecules are devoured amid the arrangement of ionic and neutral species. A mass spectrometer creates various particles from the specimen under scrutiny, it then isolates them as per their particular specific mass-to-charge ratio (m/z), and afterward records the relative abundance of each ion type. The initial phase in the mass spectrometric examination of mixes is the creation of gas stage particles of the compound, fundamentally by electron ionization. This atomic particle experiences fragmentation. Every essential item particle gotten from the atomic particle, thusly, experiences fragmentation and so on. The particles are isolated in the mass spectrometer as per their mass-to-charge proportion, A mass range of the atom is subsequently created. It shows the outcome as a plot of particle plenitude versus mass-to-charge proportion. Particles give data concerning the nature and the structure of their antecedent atom. In the range of an unadulterated intensify, the atomic particle, if show, shows up at the most noteworthy estimation of m/z (trailed by particles containing heavier isotopes) and gives the sub-atomic mass of the compound.

 

Track 8: Crystallography

Crystallography, branch of science that deals with discerning the arrangement and bonding of atoms in crystalline solids and with the geometric structure of crystal lattices. Classically, the optical properties of crystals were of value in mineralogy and chemistry for the identification of substances. Modern crystallography is largely based on the analysis of the diffraction of X-rays by crystals acting as optical gratings. Using X-ray crystallography, chemists are able to determine the internal structures and bonding arrangements of minerals and molecules, including the structures of large complex molecules, such as proteins and DNA.

 

Track 9: Spectroscopy

Spectroscopy is the study of the interaction between matter and electromagnetic radiation. Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, by a prism. Later the concept was expanded greatly to include any interaction with radiative energy as a function of its wavelength or frequency. Spectroscopic data are often represented by an emission spectrum, a plot of the response of interest as a function of wavelength or frequency. Spectroscopy and spectrography are terms used to refer to the measurement of radiation intensity as a function of wavelength and are often used to describe experimental spectroscopic methods. Spectral measurement devices are referred to as spectrometers, spectrophotometers, spectrographs or spectral analyzers.

 

Track 10: Instrumental Methods

Analytical chemistry is also focused on improvements in experimental design, chemometrics, and the creation of new measurement tools to provide better chemical information. Analytical chemistry has applications in forensics, bioanalysis, clinical analysis, environmental analysis, and materials analysis.

The instruments and techniques developed by the physicist for the determination of physical constants have furnished the chemical analyst with new devices which can be used for the quantitative and qualitative determination of the elementary composition of substances. These new methods have supplemented the classical methods of gravimetric and volumetric analysis which experienced their greatest growth during the nineteenth century. The physical methods have enabled the analyst to broaden the scope of analysis, since in many cases accurate measurements can be made without destruction of the sample. He is also able to analyze complex mixtures quantitatively, which previously would have presented almost unsurmountable difficulties. The analyst now has at his disposal physical methods which enable him to investigate problems of structure in organic chemistry, reaction kinetics, and even the biochemistry of living cells.

 

Track 11: Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy is an analytical chemistry technique used in quality control and research for determining the content and purity of a sample as well as its molecular structure. For example, NMR can quantitatively analyze mixtures containing known compounds. For unknown compounds, NMR can either be used to match against spectral libraries or to infer the basic structure directly. Once the basic structure is known, NMR can be used to determine molecular conformation in solution as well as studying physical properties at the molecular level such as conformational exchange, phase changes, solubility, and diffusion.

 

Track 12: Titration

Titration, process of chemical analysis in which the quantity of some constituent of a sample is determined by adding to the measured sample an exactly known quantity of another substance with which the desired constituent reacts in a definite, known proportion. The process is usually carried out by gradually adding a standard solution (i.e., a solution of known concentration) of titrating reagent, or titrant, from a burette, essentially a long, graduated measuring tube with a stopcock and a delivery tube at its lower end. The addition is stopped when the equivalence point is reached.

 

Track 13: Applications of Analytical Chemistry

Analytical chemistry has applications including in forensic science, bioanalysis, clinical analysis, environmental analysis, and materials analysis. Analytical chemistry research is largely driven by performance (sensitivity, detection limit, selectivity, robustness, dynamic range, linear range, accuracy, precision, and speed), and cost (purchase, operation, training, time, and space). Among the main branches of contemporary analytical atomic spectrometry, the most widespread and universal are optical and mass spectrometry. In the direct elemental analysis of solid samples, the new leaders are laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. The use of plasma- and laser-based methods is increasing. An interest towards absolute (standardless) analysis has revived, particularly in emission spectrometry.

 

Track 14: Proteomics

The focus of proteomics is a biological group called the proteome. The proteome is dynamic, defined as the set of proteins expressed in a specific cell, given a particular set of conditions. Within a given human proteome, the number of proteins can be as large as 2million.  Proteins themselves are macromolecules: long chains of amino acids. This amino acid chain is constructed when the cellular machinery of the ribosome translates RNA transcripts from DNA in the cell's nucleus.  The transfer of information within cells commonly follows this path, from DNA to RNA to protein.

 

Track 15: Forensic Analysis

A scope of analytical tools and systems are utilized in the revelation of confirmation or examination of materials significant to the examination of wrongdoings or to other legitimate procedures. Such measurable confirmation may appear as organic examples, saved follow materials and build-ups or contaminant, fake or lie materials. Analytical instrumentation utilized as a part of measurable reviews has developed to end up noticeably always touchy and give novel data and expanding levels of detail, opening up new potential outcomes in lawful examinations. Morphologically directed Raman Spectroscopy (MDRS) consolidates robotized molecule imaging and Raman spectroscopy in one instrument. Gives size and shape examination alongside substance indentification, which makes the system important for separating between different segments inside a blend or for the discovery of contaminant particles in an example- An unmistakable mark is given that can help distinguish a protest or substance, decide its source or identify changes to its uprightness coming about because of sullying. Coordinate fare of the Raman range of an obscure molecule from Malvern's Morphologi G3-ID programming to Bio-Rad's Know it by all ID Expert, with its broad substance database, upgrades the data picked up by MDRS.

 

Track 16: Advances in Separation Techniques

A separation procedure is a technique to accomplish any phenomenon that changes over a blend of synthetic substance into  two or more distinct product mixtures, which might be alluded to as mixture. No less than one of which is enhanced in at least one of the mixture's constituents. Now and again, a separation may completely partition the  mixture into its  pure constituents. separation vary in synthetic properties or physical properties, for example size, shape, mass, density, or chemical affinity, between the constituents of a mixture. They are frequently characterized by the specific contrasts they use to accomplish separation. For the most part there is just physical development and no generous synthetic modification. In the event that no single distinction can be utilized to fulfill a desired separation, numerous operations will regularly be performed in combination to accomplish the desired end. With a couple of special cases, components or mixes are normally found in a tainted state. Frequently these tainted crude materials must be isolated into their refined segments before they can be put to productive use, making separation techniques essential for the modern industrial economy. On occasion, these partitions require total purification, as in the electrolysis refining of bauxite mineral for aluminum metal, yet a fair instance of a inadequate separation method is oil refining.  Crude oil occurs naturally as a mixture of different hydrocarbons and debasements. The refining procedure splits this mixture into other, more significant mixtures, for example, flammable gas, fuel and compound feedstocks, none of which are pure substances, yet each of which must be isolated from the crude unrefined. In both of these cases, a progression of separations is important to acquire the desired finished results. On account of oil refining, crude is subjected to a long arrangement of individual refining steps, each of which creates a different product or intermediate.

 

Track 17: Analytical  Biotechnology

Current analytical biotechnology is centered around the utilization of an arrangement of empowering stage advancements that give contemporary best in class instruments for genomics, proteomics, metabolomics, tranquilize revelation, screening and investigation of regular item particles. Along these lines, logical biotechnology covers all regions of bioanalysis from biochips and nanochemistry to science and high throughput screening.  Additionally, it intends to apply propelled robotization and smaller scale fabrication innovation to the advancement of mechanical and fluidic gadgets and coordinated frameworks. Significant stages are the utilization of immobilized particles in biotechnology and bioanalysis, immunological procedures, immunological strip tests, fluorescence identification and confocal methods, optical and electrochemical biosensors, biochips, smaller scale specking, novel transducers, for example, nano bunches, nuclear constrain microscopy based strategies and examination in complex media, for example, maturation juices, plasma and serum.

 

Track 18: Pharmaceutical Analysis

Pharmaceutical analysis is a branch of practical chemistry that includes a progression of process for distinguishing proof, assurance, measurement and decontamination of a substance, partition of the segments of an answer or blend or assurance of structure of synthetic mixes. The substance might be a solitary compound or a blend of mixes and it might be in any of the dose shape. The substance utilized as pharmaceuticals are creatures, plants, small scale living beings, minerals and different manufactured items.  The specimen to be analysed is called as analyse and on the premise of size of test, they can be delegated macro(0.1 g or more), semi miniaturized scale (0.01 g to 0.1 g), micro(0.001 g to 0.01 g), sub smaller scale (0.0001 g to 0.001 g), ultramicro (underneath 10-4 g), follow analysis(100 to 10000 ppm). Among all, the semi smaller scale analysis is broadly utilized.

 

Track 19: Process Analytical Chemistry

Process analytical chemistry resembles process analytical technology for example used for the pharmaceutical industry has its beginnings as a specific sort of analytical chemistry used for the technique production. The synthetic procedures are for generation and quality control of fabricated products, and process analytical technology is utilized to decide the physical and chemical composition of the desired items during a manufacturing process. The chemical processes are for production and quality control of manufactured products and for generation and quality control of fabricated items, and process analytical technology is utilized to decide the physical and synthetic composition of the desired items during a manufacturing process.  Process analysis at first included inspecting the assortment of process streams or networks and transporting tests to quality control or central analytical administration research centers. Time delays for analytical results outcomes because of sample transport and analytical preparation steps nullified the estimation of numerous chemical analyses for purposes other than product discharge. After some time it was comprehended that real-time measurements gave convenient data about a process, which was significantly more valuable for  high efficiency and quality. The development of real-time process analysis has provided data to process optimization during any manufacturing process.

 

Track 20: Thermal Analysis and Glycomics

A branch of materials science where the properties of materials are considered as they change with temperature is what thermal analysis means. A few techniques are normally utilized – these are recognized from each other by the property which is measured: Dielectric thermal analysis (DEA), dielectric permittivity and loss factor. Types of thermal analysis: Dielectric thermal analysis, Differential thermal analysis, Differential Scanning Calorimetry, Dilatometry, Dynamic Mechanical Analysis, Evolved Gas Analysis, Laser flash analysis, thermogravimetric analysis, Thermomechanical Analysis, Thermo-optical analysis and Derivatography.

Glycomic analysis look to see how a gathering of glycans identifies with a specific natural event. Glycomes can far surpass proteomes and transcriptomes regarding complexity.some gauges have set the vertebrate glycome at more than one million discrete structures. Many parts of glycobiology can be seen just with a frameworks level analysis. glycomic changes amid improvement and cancer progression. many GBPs are oligomerized on cells and connect with multivalent varieties of glycans on restricting cells.multiple discrete glycan epitopes work in show to draw in two cells or convey a flag from one cell to the next. The accompanying are cases of the usually utilized methods in glycan analysis: High-resolution mass spectrometry and high-performance liquid chromatography. Multiple Reaction Monitoring. Apparatuses for glycoproteins X-beam crystallography and nuclear magnetic resonance spectroscopy for complete structural analysis of complex glycans is a troublesome and complex field. However the structure of the coupling site of various lectins, catalysts and other starch restricting proteins has uncovered a wide assortment of the basic reason for glycome work.

 

Track 21: Applications of Analytical and Bioanalytical Methods

Applications of Analytical and Bioanalytical Methods would discuss more about Chemometrics, marine products, and food science, Advances in micro/nano-bioanalysis, Micro and nano technologies in bioanalysis, Method development and validation reports. Advances in micro/nano-bioanalysis: the recent research stream focuses on the integration of chemical functions using various immobilization or patterning techniques, and fusion with nano-scale materials/molecules described above or conventional micro analytical techniques such as flow injection analysis, capillary electrophoresis, and  micro electrodes.To create valuable micro bioanalytical devices, such as  single-cell analysis devices or high-performance diagnosis devices. Micro and nano technologies in bioanalysis: The current improvement of bioanalytical techniques including the improvement of exceedingly delicate or selective analytical methods in view of nano-scale materials/molecules, and the advancement of new analytical tools or methods based on micro/nano-devices have progressed with remarkable success. Analytical methods development and validation play important roles in the discovery, development, and manufacture of pharmaceuticals. Pharmaceutical products formulated with more than one drug, typically referred to as combination products, are intended to meet previously unmet patients need by combining the therapeutic effects of two or more drugs in one product. These combination products can exhibit overwhelming difficulties to the analytical chemist in charge of the development and validation of analytical methods.

 

Track 22: New Instrumentation and Equipment

Analytical instruments are used in a variety of fields, given their cross-discipline compatibility to analyze samples. Analytical instruments are used not only in the laboratory environment, but also on the field. They include, but are not limited to the following areas: Analytical Chemistry, Clinical Analysis, Environmental Testing, Food & Beverage Analysis, Forensic Analysis, Life Science Research (e.g. metabolomics, genomics, proteomics), Materials Characterization and Research, Petrochemical Testing, Pharmaceutical Analysis and more. Analytical instrumentation includes those used within spectroscopy, mass spectrometry, electrochemical analysis, thermal analysis, separation analysis, microscopy, and the various hybrid technologies (e.g. GC-MS and HPLC-MS).  Examples of analytical instruments include mass spectrometers, chromatographs (e.g. GC and HPLC), titrators, pectrometers (e.g. AAS, X-ray, and fluorescence), particle size analyzers, rheometers, elemental analyzers (e.g. salt analyzers, CHN analyzers), thermal analyzers.

 

Track 23: Regulatory Issues and Biosafety Challenges in Bioanalysis

Liquid chromatography-mass spectrum analysis may be a key analytical technique that mixes the physical division capacities of liquid movement with the mass spectrometry examination abilities of spectrometry analysis. LC-MS framework is used for quick and mass coordinated filtration of characteristic items separates and new atomic substances important to nourishment, pharmaceutical, agrochemical and differing ventures. LC-MS is once in a while utilized as a part of medication advancement which we look at extensive variety of stages like, polluting influence recognizable proof, quantitative Bio-Analysis, and control. FDA has impelled testing of current quality testing of conventional solutions among prescription patients all through medication headway. Conventional Chinese Medicine is a recuperating framework created in China over 2,200 years back, consolidating medications that are now and again. One of its coordinating gauges is to dissipate malevolence and bolster the great Not withstanding treating disease, Traditional Chinese Medicine focuses on strengthening the body's safeguards and improving its capacity for recuperating herbs and to look after wellbeing.

 

Track 24: Polymer Nanotechnology

Polymer nanocomposites comprise of a polymer or copolymer having Nano particles scattered in the polymer grid. Polymer nanotechnology gathering will create empowering strategies for the designing of useful surfaces. Nanotechnology has made vital commitments to the definition of cements, sealants, coatings, preparing and exemplification mixes. Nanoparticle fillers, for example, bentonites, nano-sized silica particles and zeolites has prompt the advancement of items with improved: warm soundness, water/concoction opposition, straightforwardness, warm conductivity, elasticity.

 

Track 25: Biopolymers and Biomaterials

Biopolymers are pulling in colossal consideration generally as a result of their differing applications that can address developing ecological concerns and vitality requests. The improvement of different biomaterials makes noteworthy headways in the restorative field also, and numerous biopolymers are utilized for the creation of biomaterials. Together, biopolymers and biomaterials make extraordinary potential for new materials, applications, and employments.

Biopolymers and Biomaterials, covers the science and use of biopolymers and biomaterials. It exhibits a variety of various examinations on biopolymers and biomaterials, alongside their outcomes, elucidation, and the conclusions touched base at through examinations. It incorporates biopolymer combination, their portrayals, and their potential applications.

 

Track 26: Bioplastics

Bioplastic is a biodegradable material that originate from inexhaustible sources and can be utilized to decrease the issue of plastic waste that is choking out the planet and dirtying the earth. Bioplastics are biodegradable materials that originate from sustainable sources and can be utilized to decrease the issue of plastic waste that is choking out the planet and defiling nature Plastic is the third most usually utilized oil subsidiary on the planet; every year 200 million tons of plastic are devoured on the planet. It originates from a non-sustainable source (oil), it is tainting and non-biodegradable(it can take over 1000 years to decay). 
That is the reason nations, for example, Bangladesh have disallowed conventional plastic packs (they stick the sewage pipes and cause flooding), Africa has sanctified through water them as another 'national blossom' since they are so obvious everywhere throughout the scene and Europe has thought about exhausting them. Likewise, this waste is the reason for the passing of marine species and fowl that ingest them (whales, ocean turtles, gooney bird, and so on.) and represent a genuine ecological issue, for example, rubbish patches (islands of trash).
 
 
 
 
Organic Chemistry Is A Division Of Chemistry That Involves A Scientific Approach To Structure, Properties, And Applications Of Organic Molecules And Compounds That Are; It Is A Matter Containing Carbon In Discrete Forms. In General, It Is A Study Of Molecules Comprising Of Carbon Compounds With Several Numbers Of Other Associated Elements Namely Hydrogen, Silicon, Sulfur, Oxygen, Phosphorus, Halogens, And Nitrogen. Investigation Of Structures Involves Regulating Chemical Constitution And Composition Of Organic Materials And Compounds Through Numerous Chemical And Physical Methods, Whereas A Study Of Properties Involves Evaluation Of Chemical Reactivity To Understand The Behavior Of Organic Matter In Its Purest Forms, If Possible In Mixtures, Fabricated Forms And Solutions As Well. At first, This Branch Of Chemistry Was Finite To Compounds That Were Produced By Living Organisms But Now It Has Been Widespread To Incorporate Man-Made Substances Namely Plastics.
 
 
 
 
The objective of green Analytical science is to utilize systematic methodology that produce less risky waste and that are more secure to utilize and more favorable to the earth. growing new analytical methodologies altering an old strategy to fuse techniques that either utilize less dangerous synthetic compounds or utilize lesser measures of perilous synthetic compounds. Greening Pretreatment Includes Ultrasound, Microwave-Assisted Extraction(MAE, Supercritical Fluid Extraction(SFE)and Superheated Water Extraction(SWE, Membranes, Cloud Point Extraction(CPE), Greening through Screening, Solid-phase extraction(SPE), Solid-phase microextraction(SPME).Greening Signal Acquisiton includes Spectroscopy, Electrochemistry and Bioanalytical chemistry
 
 
 
 

Medicinal Chemistry is a fortifying field as it joins numerous logical teaches and takes into account coordinated effort with different researchers in exploring and growing new medications. Restorative scientific experts apply their science preparing to the way toward integrating new pharmaceuticals. They additionally enhance the procedures by which existing pharmaceuticals are made. Medicinal Chemistry are centered around medicate disclosure and improvement and are worried about the disconnection of restorative specialists found in plants, and in addition the making of new manufactured medication mixes. Most scientific experts work with a group of researchers from various orders, including biologists, toxicologists, pharmacologists, theoretical chemists, microbiologists, and biopharmacists. Together, this group utilizes modern investigative strategies to combine and test new medication items and to build up the most practical and naturally amicable methods for generation.

 

Track 30: Radioanalytical Chemistry

Radioanalytical Chemistry centers around the examination of test for their radionuclide content. Different strategies are utilized to cleanse and recognize the radioelement of enthusiasm through compound strategies and test estimation methods. The field of radioanalytical Chemistry was initially created by Marie Curie with contribution by Ernest Rutherford and Frederick Soddy. They created Chemical Separation and radiation measurement methods on earthbound radioactive substances. Amid the twenty years that took after 1897 the ideas of radionuclides was conceived. Since Curie's opportunity, utilizations of radioanalytical Chemistry have multiplied. Current advances in atomic and radiochemistry explore have enabled specialists to apply chemistry and nuclear systems to clarify nuclear properties and responses, utilized radioactive substances as tracers, and measure radionuclides in a wide range of kinds of tests. The significance of radioanalytical science traverses numerous fields including chemistry, material science, pharmaceutical, pharmacology, biology, ecology, hydrology, geology, forensic analysis, barometrical sciences, , archaeology , and engineering. Applications include: shaping and describing new components, deciding the period of materials, and making radioactive reagents for particular tracer use in tissues and organs. The continuous objective of radioanalytical specialists is to grow more radionuclides and lower focuses in individuals and the earth.

Market Analysis

Market research report for Analytical chemistry according to IMS (Intercontinental Marketing Services) Health study report, in 2011 Austria became the fourth largest pharmaceutical market in Europe with a market size of $22.7 billion. The market is dominated by branded medicines with a share of about 88% value wise.  Presently few Pharma companies in Austria have received approvals from US Food and Drug Administration (US FDA), European Medicines Agency (EMA), Pharmaceuticals and Medical Devices Agency, Japan (PMDA). Spectrometry segment has the largest share (33.8%) followed by chromatography (22%) in the year 2011. The spectrometry market is driven by the coupling of mass spectrometry with chromatography techniques, growing 7.4% from 2011 to 2017.

Global Market

The global analytical chemistry and instrumentation market was evaluated to be $30.2 billion in the year 2011 and is relied upon to grow 8.4% from 2011 to 2016 to reach $45.2 billion. Spectrometry section has the biggest offer (33.8%) trailed by chromatography (22%) in the year 2011. The spectrometry market is driven by the coupling of mass spectrometry with chromatography techniques, growing 7.4% from 2011 to 2017. The headway of the Analytical and Bio-explanatory Techniques brought a dynamic teach for which the future holds many empowering chances to further change. The principle impact of bionalysis in the pharmaceutical business is to get a quantitative measure of the drug and its metabolites. The reason is to perform the pharmacokinetics, toxic kinetics, and bioequivalence and exposure reaction like pharmacokinetic/pharmacodynamic studies. Distinctive bioanalytical strategies are performed in bioanalytical studies for example hyphenated techniques, chromatographic methods, and ligand binding assays.The life science instrumentation market is expected to accomplish USD 64.52 Billion by 2021 from USD 46.36 Billion in 2016, at a CAGR of 6.8% in the vicinity of 2016 and 2021. Factors such as growing pharmaceutical R&D ventures, expanding food safety concerns, availability of public and private funding for life science research studies, innovative advancements in analytical instruments, and stringent drug development controls in developed countries are propelling the development of the global life science instrumentation market.The convenient analytical instruments market is anticipated to reach USD 9.55 Billion by 2020 from USD 8.10 Billion in 2015, at a CAGR of 3.3%. Flexible analytical instruments are lightweight handheld instruments with straightforward infrastructure and convey instant results, in any area and under any climate condition. The Global Cell Separation Techniques Market is prepared to create at a CAGR of around 10.6% all through the next decade to reach roughly $6.04 billion by 2025. A portion of the noticeable patterns that the market is seeing include growing infectious diseases in rising countries, expanding stem cell research, innovative advancement of cell separation strategies and development opportunities/investment opportunities. The overall development of the market will be driven by biotechnology and pharmaceutical organizations as they look for the following new drugs to help an undeniably enormous and old population. It is these enterprises that governments rely on to keep their voters healthy — and the industries are often at the forefront of developing new strategies and procedures as they look for cost-effective drug pipelines. The world has witnessed a strong pattern of demand for analytical instruments and automation products in the past few years. The US, in such a scenario, has played a leadership role in further strengthening the market potential. Renowned players of the industry has effectively seen boost in their revenue, marked by factors such as high investments, strict regulations & compliances, and product innovations. Though the economic slowdown impacted the market in 2009, the post-recession period is likely to bring increased spending from end-users. By 2014, the US analytical instruments market may reach US$ 7.3 Billion.In 2011, the market size of analytical instruments sector in the US is expected to be worth US$ 6.6 Billion. Market growth is largely dependent on the spending patterns of several industries, such as chemicals, food & beverage, oil & gas, electric utilities, pharmaceutical etc. As most of these sectors are performing good and capital spending is effective, the demand for quality driven analytical instrument may propel the overall market. Moreover, the government is also ensuring that safety remains the top issue in all the industries. Key segments under the US analytical instruments market include gas analytical instruments, liquid analytical instruments, final control elements, electronic flowmeters, and control systems. In 2011, these segments together are likely to account for around 70% of the total market. Government regulations and acts regarding environmental safety and food safety, chemical plants, and drugs manufacturing are the key drivers for these segments.The report “US Analytical Instruments Market Forecast” is a prime source of knowledge and analysis of the US analytical instruments market. It broadly investigates the application areas of key segments in several industries and discusses their spending patterns. Competitive landscape section deals with the description, recent developments, and strength-weakness analysis of key market players. Overall, the report is best suited for those clients and investors who are concerned with the current performance and future outlook of the analytical instruments sector in the US. Among chemists, analytical chemistry is a popular specialty. As indicated by the 2014 American Chemical Society salary and employment survey, among 20 work specialties, analytical chemistry utilized the most elevated rate of ACS individuals, at 14 percent. What's more, as indicated by the Bureau of Labor Statistics, the employment of chemists and materials researchers was anticipated to grow 6 percent yearly from 2012 to 2022. Analytical chemistry experts play a crucial role as problem solvers in industries such as pharmaceuticals, food testing, life sciences, and cosmetic companies, and analytical chemists with interdisciplinary backgrounds are finding a significantly more noteworthy interest for their skills by employers. Progressively, analytical chemistry is additionally seen to be fundamental to organizations' needs — and has advanced from being an instrument to test a sample to being  critical to get the required data to settle on the correct choices while moving a product from development to commercialization. Another explanation for growing demand for analytical chemists is the improvement and accessibility of increasingly complex, sensitive and quicker analytical instruments. These instruments are equipped for producing tremendous measures of complex information that require profound mastery in order to obtain meaningful results.

Past Conference Report

Past Conference Report

Analytical Chemistry 2018 Report

The 9th Edition of International Conference on Analytical Chemistry was held on March 26-28, 2018 in Vienna, Austria with the presence of professional researchers, scientists involved in the development of high-quality education & research in all aspects.

Analytical Chemistry 2018 witnessed an amalgamation of peerless speakers who enlightened the crowd with their knowledge and confabulated on various topics related to the field of Analytical Chemistry. The highly exalted conference hosted by EuroSciCon was marked with the attendance of renowned and brilliant researchers, business delegates and talented student communities representing more than 20 countries around the world. The conference has tried grounding every aspect related to Analytical Chemistry, covering all the possible research areas.

The conference aimed a parallel rail with theme “Novel Advances and Applications in Analytical Chemistry”. The meeting engrossed a vicinity of cognizant discussions on Novel Approaches to Analytical and Bioanalytical Methods, Analytical Methodology, Bioanalytical Methodology, Chromatograpic Techniques, Environmental Analytical Chemistry, Electrophoresis, Advancements in Mass Spectrometry, Forensic Analysis, Advances in Separation Techniques, Analytical Biotechnology, Pharmaceutical Analysis, Process Analytical Chemistry, Thermal Analysis and Glycomics, Applications of Analytical and Bioanalytical Methods, New Instrumentation and Equipment, Regulatory Issues and Biosafety Challenges in Bioanalysis. The three days event implanted a firm relation of upcoming strategies in the field of Analytical Chemistry with the scientific community. The conceptual and applicable knowledge shared, will also foster organizational collaborations to nurture scientific accelerations.

We are thankful to all our speakers for encouraging and supporting us to conduct the conference and catapulting the same to pinnacle of success.

The Organizing Committee would like to thank the moderator: Peter Boves Harrington, Ohio University, USA for his valuable contribution which resulted in smooth functioning of the conference.

We would also like to thank our Poster judge Philiswa Nosizo Nomngongo, University of Johannesburg, South Africa for the evaluation of Poster Presentations.

The meeting was embarked with an opening ceremony followed by Keynote Sessions and followed by series of lectures delivered by Honorable Guests and members of the Keynote forum. The highlights of the meeting were the eponymous lectures, delivered by:

Peter Boves Harrington, Ohio University, USA

Sebastian Ziewer Arndts, Analyticon Instruments GmbH, Germany

Emmanuel Mikros, National and Kapodistrian University of Athens, Greece

Vusumzi Emmanuel Pakade, Vaal University of Technology, South Africa

Vladimir Guskov, Bashkir State University, Russia

Hyeseon Lee, Pohang University of Science and Technology, Korea

Moustfa Khalifa, Ministry of Health, Kuwait

Philiswa Nosizo Nomngongo, University of Johannesburg, South Africa

Haojun Jin, Southeast University, P R China

Xiaojun Qu, Southeast University, P R China

Beibei Zhang, Southeast University, China

Shuyan Zhang, Southeast University, China

Ghazale Daneshvar Tarigh, University of Tehran, Iran 

All of them provided their fruitful contributions in the form of highly informative presentations and made the conference a top notch one.

EuroSciCon is prerogative to thank the Organizing Committee Members, Keynote speakers and Chairs on transcribing the plenary sessions and workshop in a diversified and variegate manner to make this conference an enviable artefact.

EuroSciCon offers its heartfelt appreciation to our Exhibitor “Analyticon”. We also express our sincere thanks to all the media partners for the promotion of our event to glory.

Analytical Chemistry 2018 would not have reached the pinnacle if not with the support of International, multi-professional steering committee and coordination of Insights in Analytical Electrochemistry, Der Chemica Sinica and Der Pharmacia Sinica.

With the grand success of Analytical Chemistry 2018, we are glad to announce our next upcoming conference “10th Edition of International Conference on Analytical Chemistry” which is going to be held in London, UK during Feb 28-Mar 01, 2019.

Bookmark your dates…

Hoping to meet you again coming year at London!!!

Learn More

Top Analytical Chemistry Universities Worldwide:

Analytical Chemistry Universities | Analytical Chemistry Conferences

Peking University | University of Cambridge | Univeristy of Tokyo | Zhejiang University | Nanjing University | Kyoto University | California Institute of Technology | University of Chicago | Fudan University | University of Oxford | University of Science and Technology of China | Georgia Institute of Technology | Osaka University | Swiss Federal Institute of Technology Zurich | Korea Advanced Institute of Science and Technology | University of California | Imperial College | University of Wisconsino | East China University of Science and Technology | Dalian University of Technology | Xiamen University | University of Illinois | University of Michigan | Jilin UniversityNankai University | University of Toronto | Tohoku University | Princeton University | University of North Carolina | University of Minnesota | National Taiwan University | University of Pennsylvania | Seoul National University | Cornell University | University of California | Shanghai Jiao Tong University | Texas A&M University  | Pennsylvania State University | Pohang University of Science and Technology

 

Europe Analytical Chemistry Universities | Analytical Chemistry Conferences

Univeristy of Graz | University of Innsbruck | Montanuniversität Leoben | Johannes Kepler University | Ghent University | Ruaer Boskovia Institute | University of Split | University of Zagreb | Charles University | Palacký UniversityUniversity of Pardubice | University of Copenhagen | Aalto University | University of Grenoble | Institute for Research in Organic Fine Chemistry | National Graduate School of Engineering Chemistry | Lille Univeristy | University of Lyon | Chimie paris tech | Laboratory Analytical Sciences | Univeristy of Poitiers | University of Pau and Adour Country | University of Reims Champagne | University of Strasbourg | University in Aachen | University of Bayreuth | Technical University of Berlin | Free University of Berlin | Ruhr University Bochum | University of Bonn | University of Alicante | University of Barcelona | University of the Basque Country | University of Cádiz | University of Extremadura | University of Granada | University of Jaén | University of Oviedo | University of Santiago de CompostelaUniversity of Valladolid | University of Vigo | University of Zaragoza | Stockholm university | University of Bradford | University College CorkMasaryk University | Robert Gordon UniversitySheffield Hallam University | University of Southampton | University of Warwick

 

USA Analytical Chemistry Universities | Analytical Chemistry Conferences

Brigham Young University | California State University | California State University | Case western Reserve University | Clarkson University | Cleveland State University | Florida State University | Georgetown University | The George Washington University | Governors State University | Howard University | Illinois Institute of Technology | Indiana University | Kansas State University | Kent State UniversityMarquette University | Miami University | Northeastern University | Old Dominion University | Oregon State University | Purdue University | New Brunswick Piscataway | Seton Hall University | South Dakota State University | Stevens Institute of Technology | Tufts University | University of Cincinnati | University of Georgia | University of Louisville | University of Maryland | University of Missouri&nbs

Media Partners/Collaborator

A huge thanks to all our amazing partners. We couldn’t have a conference without you!

Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker

Sponsors/Exhibitors

A huge thanks to all our amazing partners. We couldn’t have a conference without you!

Sponsors

Talk to Us

Speak directly to one of our conference representatives by calling.


+0044-2033180199

Mail Us

E-mail us your questions about the conference. We will respond to your questions.


contact@euroscicon.com

Contact Us

Have questions?
We'll be in touch within 24 hours.


Contact Us

Address

EuroSciCon Ltd
35 Ruddlesway,
Windsor, Berkshire,
SL4 5SF, UK

EuroSciCon Events are produced by Euroscicon Ltd

EuroSciCon, founded in 2001 is a UK based independent life science Events Company with predominantly business and academic client base. The key strategic objective of EuroSciCon is to communicate science and medical research between academia, clinical practice and the pharmaceutical industry. Most of its events are in Europe and London or live streamed. EuroSciCon expanded its operations to international in association with Meetings International, Singapore. All major meetings of EuroSciCon and Meetings International will issue Continued Professional Education (CPD), Continued Education (CE), Continued Medical Education (CME) Credits.